On a mixed and multiscale domain decomposition method

نویسندگان

  • Pierre Ladevèze
  • David Néron
  • Pierre Gosselet
چکیده

This paper presents a reexamination of a multiscale computational strategy with homogenization in space and time for the resolution of highly heterogeneous structural problems, focusing on its suitability for parallel computing. Spatially, this strategy can be viewed as a mixed, multilevel domain decomposition method (or, more accurately, as a “structure decomposition” method). Regarding time, a “parallel” property is also described. We also draw bridges between this and other current approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abstract Multiscale–hybrid–mixed Methods

MULTISCALE–HYBRID–MIXED METHODS ALEXANDRE L. MADUREIRA Dedicated to Leo Franca, in memoriam. ABSTRACT. In an abstract setting, we investigate the basic ideas behind the Multiscale Hybrid Mixed (MHM) method, a Domain Decomposition scheme designed to solve multiscale partial differential equations (PDEs) in parallel. As originally proposed, the MHM method starting point is a primal hybrid formula...

متن کامل

Mixed Multiscale Methods for Heterogeneous Elliptic Problems

We consider a second order elliptic problem written in mixed form, i.e., as a system of two first order equations. Such problems arise in many contexts, including flow in porous media. The coefficient in the elliptic problem (the permeability of the porous medium) is assumed to be spatially heterogeneous. The emphasis here is on accurate approximation of the solution with respect to the scale o...

متن کامل

Implementation of a Mortar Mixed Finite Element Method using a Multiscale Flux Basis

This paper provides a new implementation of a multiscale mortar mixed finite element method for second order elliptic problems. The algorithm uses non-overlapping domain decomposition to reformulate a fine scale problem as a coarse scale mortar interface problem, which is then solved using an iterative method. The original implementation by Arbogast, Pencheva, Wheeler, and Yotov, Multiscale Mod...

متن کامل

A Multiscale Mortar Multipoint Flux Mixed Finite Element Method

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces....

متن کامل

A Stochastic Mortar Mixed Finite Element Method for Flow in Porous Media with Multiple Rock Types

This paper presents an efficient multiscale stochastic framework for uncertainty quantification in modeling of flow through porous media with multiple rock types. The governing equations are based on Darcy’s law with nonstationary stochastic permeability represented as a sum of local Karhunen-Loève expansions. The approximation uses stochastic collocation on either a tensor product or a sparse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017